4 stroke engines and systems for gas powered vessels

Rome 20.01.2011 – The use of LNG as fuel for propulsion on board of merchant ships P. Baan Wartsila

Our offering

... we are seeking growth beyond the organic growth

NG for shipping, the start

Natural Boil-Off Gas (N-BOG), Forced Boil-Off Gas (F-BOG), Heavy Fuel Oil (HFO) and / or Marine Diesel Oil (MDO)

Natural Boil-Off Gas (N-BOG), Forced Boil-Off Gas (F-BOG), Heavy Fuel Oil (HFO) and / or Marine Diesel Oil (MDO)

The LNG Carrier Segment

Gaz de France – Suez "Provalys" The first LNG Carrier with Wärtsilä Dual-Fuel engines Delivered in November 2006 Total running hours cumulated ~ 70'000

Dual-Fuel engines - References

Dual Fuel sold or running

LNG carriers 62 installations 230 engines > 600'000 running hours

Power plant 28 installations 84 engines >640 000 running hours

Offshore 7 installations 22 engines >226 000 running hours

Environmental challenge

NO_x

Acid rains
Ozone depletion
Tier II (2011)
Tier III (2016)

SOx

Acid rains

3.5% (2012) ECA 0.1% (2015) **PM**

Harming humans and animals

Along with SOx reduction

 CO_2

Greenhouse gas

Under evaluation by IMO → EEDI

NO_x reduction – IMO requirements and methods

Tier I (present)

Ships built 2000 onwards Engines > 130 kW Retrofit: Ships built 1990 – 2000 Engines > 90 litres/cylinder and > 5000 kW Wärtsilä: RTA, W46, W64

Tier II (global 2011)

Ships keel laid 2011 onwards Engines > 130 kW

Tier III (ECAs 2016)

Ships in designated areas, keel laid 2016 onwards Engines > 130 kW

Rated engine speed (rpm)

SOx and Particulate reduction - IMO requirements on fuel sulphur content

- ALL vessels (new buildings and existing fleet) have to meet compliance
- SOx scrubbers are allowed as an alternative!

Emission Control Areas

Proliferation of ECA areas is expected in the next future

New regulations: how to meet compliance?

Greenhouse gases (GHG) ↔ global warming caused by human activities

Mapping of fuels

Sulphur emission regulations impact the choice of fuel The choice of fuel is not a simple one!

	HSFO	Distillates (MDO - MGO)	Natural Gas	Biofuels*
+	• Cost • Availability	Low emissionsNo treatment on board	 Very low emissions High efficiency (LHV) Low ship operating costs 	• Low SOx and CO2 emissions
	 Requires scrubber in SECA Treatment on board 	PriceLong term availabilityViscosity issues	 Availability / logistics Space on board 	PriceAvailabilityNot sustainable from food crops

^{*} Includes raw vegetable oils, biodiesel, synthetic fuels (BTL)

Economical challenge

- Marine Gas Oil Rotterdam
- 180 Centistoke Rotterdam
- 380 Centistoke Rotterdam
- LNG Henry Hub

Fuel price [USD/MMBTU]

Source: bunkerworld.com; LNG OneWorld.com

Gas engine technologies experience

Gas-diesel (GD) engines:

- Runs on various gas / diesel mixtures or alternatively on diesel.
- Combustion of gas, diesel and air mixture in Diesel cycle.

High-pressure gas injection.

Spark-ignition gas (SG) engines:

- · Runs only on gas.
- Combustion of gas and air mixture in
 Otto cycle, triggered by spark plug ignition.
- Low-pressure gas admission.

Dual-fuel (DF) engines:

- Runs on gas with 1% diesel (gas mode) or alternatively on diesel (diesel mode).
- Combustion of gas and air mixture in Otto cycle, triggered by pilot diesel injection (gas mode), or alternatively combustion of diesel and air mixture in Diesel cycle (diesel mode).
- Low-pressure gas admission.

Main advantages of the Dual-Fuel 4-stroke engine compared to SG:

 DF never totally misfires at low engine load thanks to diesel process of the pilot fuel combustion

Gas mode - DF:

- Otto principle
- Low-pressure gas admission
- Pilot diesel injection

Gas mode - SG:

- Otto principle
- Low-pressure gas admission
- Pilot gas injection to prechamber and ignition by spark plug

"Pure gas" engine claimed arguments

Main advantages of the spark ignited gas engine (SG) compared to Dual-Fuel 4-stroke engine

- "Clean" Gas engine, i.e. no liquid fuel in the SG engines
 - Liquid however needed onboard for auxiliary/emergency gensets
- Optimized engine performance for certain gas quality/property due to single fuel optimisation

Main advantages of the Dual-Fuel 4-stroke engine compared to SG:

- Multi-fuel operation capability (HFO, LFO, LNG, LBF)
- Operation capability on liquid fuel outside ECA-area (incl HFO)
- Single gas storage. SG solution would require following for redundancy:
 - Double gas storage and fuel supply systems, independent from each other (class requirement), or
 - PTI/"Take me home" device needed in single main engine "Gas only" application
- Freedom to re-route the vessel
 - Independent of gas bunkering terminals
- A disturbance in gas mode leads to an automatic and instant switchover to diesel mode without loss of engine power and speed

Main advantages of the Dual-Fuel 4-stroke engine compared to SG:

- Freedom to re-route the vessel
 - Independent of gas bunkering terminals
- A disturbance in gas mode leads to an automatic and instant switchover to diesel mode without loss of engine power and speed
- In case of leakage in a gas supply pipe making shutdown of the gas supply necessary
 - A secondary independent gas fuel supply needed in "gas only" installations
 - Back-up diesel fuel generators required in "gas only" installations

Main advantages of the Dual-Fuel 4-stroke engine compared to SG:

- Simple mechanical propulsion application
 - Full power available in both fuel operation modes
- Load application capability
 - Load application capability is equal between dual-fuel and SG
 - Dual-fuel can trip to liquid in case instant abnormal high load / unload requirement (no shut-down)

→ Improves safety

Main advantages of the Dual-Fuel 4-stroke engine compared to SG:

- Same low load / idling limitation as in diesel engine (under validation)
 - Dual-fuel engine is capable running on <10% MCR (2bar BMEP) in gas mode
- No secondary NOx exhaust gas purification needed in gas operation mode

Main advantages of the Dual-Fuel 4-stroke engine compared to SG:

- Service interval
 - Dual-fuel normal time between overhaul is 6'000hrs (injection nozzle)
 - SG normal time between overhaul is 1'000 2'000hrs (spark plugs)

Conclusion technology selection

DUAL-FUEL MACHINERY brings:

Safety Redundancy Flexibility

What is natural gas?

Natural gas is mostly methane (CH₄)

 Methane contains the highest amount of energy per unit of carbon of any fossil fuel

Carbon to hydrogen ratio 1 / 4 (gasoline: 1 / 2,25)

Lower CO₂ emissions for same amount of thermal energy

- Natural gas is:
 - A very safe fuel
 - Non-toxic
 - Lighter than air

IMO Energy Efficiency Design Index (EEDI)

Transport work

Example: EEDI estimation

Assumptions:

 Length, wl
 220 m

 Beam
 33 m

 Draft
 7.1 m

 Displ.
 25 000 m³

 DWT
 12 000 ton

Example: Max allowed power to reach EEDI requirement

Example: Max allowed power to reach EEDI requirement

Example: Max allowed power to reach EEDI requirement

Example: EEDI with LNG vs HFO

Assumptions:

 Length, wl
 220 m

 Beam
 33 m

 Draft
 7.1 m

 Displ.
 25 000 m³

 DWT
 12 000 ton

Natural Gas As Marine fuel

Additional operating costs for IMO TIER III compliance

Reference = W46F Tier II compliant

Natural Gas As Marine fuel

Wärtsilä Dual Fuel Engines

Fuel flexibility optimizes **Operational Expenses:**

- → In ECA zones, no exhaust after treatment technology is required.
- → Outside ECA zones, the most advantageous fuel can be selected

Expected LNG availability

LNG storage

Storage volume (Relative)

LNGPac Simplified P&ID

Modularized solutions

- LNGPac is a modularized solution that fits multiple vessel profiles
 - Ship's autonomy
 - Gas consumption (DF engine(s) power)

	SHIP'S AUTONOMY (DAYS)					
GAS CONSUMPTION		Tank 1 (m³)	Tank 2 (m³)	Tank 3 (m³)	Tank 4 (m³)	
	Gas cons. (Kg/s) range 1					
	Gas cons. (Kg/s) range 2					
	Gas cons. (Kg/s) range 3					

= modularized process skid

LNG storage location

Gas storage below deck

LNG – regulatory bodies

Maritime regulations for gas fuelled ships

- Classification societies
 - DNV
 - LR
- IMO
 - IMO MSC adopted the Interim Guidelines on safety for natural gas-fuelled engine installations in ships (resolution MSC-86-285)
- Flag states
 - Today only the Norwegian Maritime Directorate has got rules available
- International Gas Carrier (IGC) code

LNG tanks located outside

The LNG tanks can be located outside

- Does not take up space inside ship
- Good ventilation
- No ventilation casing needed trough accommodation
- Visible location for good PR

Bunkering

- Tanker truck
- Land based storage tank
- Tanker ship / barge
- ISO container
- Trailer on board

Natural Gas As Marine fuel – distribution chain Courtesy of I.M.S. – Nordic LNG **LNG Terminal** LNG Feeder LNG Container feeder LNG Ferry LNG Ro-Lo LNG Tug

Dual-Fuel Engine Portfolio

Torque meter position in mechanical drive (DF) installation

Conclusion

- DF became in very short time dominating solution for BOG in LNG carriers
- More stringent emission requirements increase CAPEX and OPEX for when using liquid fuels making LNG an attractive alternative
- Natural gas burned according lean burn otto cycle meets known and upcoming legislation with primary methods
- Dual fuel offers highest flexibility and therefor our choice for shipping

The technology is avialable but the infrastructure is the limiting factor at this moment!

